ARTICLE 690 - Solar Photovoltaic (PV) Systems

Part III. Disconnecting Means

690.15 Disconnection of Photovoltaic Equipment. Isolating devices shall be provided to isolate PV modules, ac PV modules, fuses, dc-to-dc converters inverters, and charge controllers from all conductors that are not solidly grounded. An equipment disconnecting means or a PV system disconnecting means shall be permitted in place of an isolating device. Where the maximum circuit current is greater than 30 amperes for the output circuit of a dc combiner or the input circuit of a charge controller or inverter, an equipment disconnecting means shall be provided for isolation. Where a charge controller or inverter has multiple input circuits, a single equipment disconnecting means shall be permitted to isolate the equipment from the input circuits.

Informational Note: The purpose of these isolating devices are for the safe and convenient replacement or service of specific PV system equipment without exposure to energized conductors.

(A) Location. Isolating devices or equipment disconnecting means shall be installed in circuits connected to equipment at a location within the equipment, or within sight and within 3 m (10 ft) of the equipment. An equipment disconnecting means shall be permitted to be remote from
the equipment where the equipment disconnecting means can be remotely operated from within 3 m (10 ft) of the equipment.

B) Interrupting Rating. An equipment disconnecting means shall have an interrupting rating sufficient for the maximum short-circuit current and voltage that is available at the terminals of the equipment. An isolating device shall not be required to have an interrupting rating.

(C) Isolating Device. An isolating device shall not be required to simultaneously disconnect all current-carrying conductors of a circuit. The isolating device shall be one of the following:

1. A connector meeting the requirements of 690.33 and listed and identified for use with specific equipment
2. A finger safe fuse holder
3. An isolating switch that requires a tool to open
4. An isolating device listed for the intended application

An isolating device shall be rated to open the maximum circuit current under load or be marked “Do Not Disconnect Under Load” or “Not for Current Interrupting.”

(D) Equipment Disconnecting Means. An equipment disconnecting means shall simultaneously disconnect all current carrying conductors that are not solidly grounded of the circuit to which it is connected. An equipment disconnecting means shall be externally operable without exposing the operator to contact with energized parts, shall indicate whether in the open (off) or closed (on) position, and shall be lockable in accordance with 110.25. An equipment disconnecting means shall be one of the following devices:

1. A manually operable switch or circuit breaker
(2) A connector meeting the requirements of 690.33(E)(1)

(3) A load break fused pull out switch

(4) A remote-controlled circuit breaker that is operable locally and opens automatically when control power is interrupted

For equipment disconnecting means, other than those complying with 690.33, where the line and load terminals can be energized in the open position, the device shall be marked in accordance with the warning in 690.13(B).

Part IV. Wiring Methods

690.31 Methods Permitted.

(A) Wiring Systems. All raceway and cable wiring methods included in this Code, other wiring systems and fittings specifically listed for use on PV arrays, and wiring as part of a listed system shall be permitted. Where wiring devices with integral enclosures are used, sufficient length of cable shall be provided to facilitate replacement. Where PV source and output circuits operating at voltages greater than 30 volts are installed in readily accessible locations, circuit conductors shall be guarded or installed in Type MC cable or in raceway.
For ambient temperatures exceeding 30°C (86°F), conductor ampacities shall be corrected in accordance with Table 690.31(A).

<table>
<thead>
<tr>
<th>Ambient Temperature (°C)</th>
<th>60°C (140°F)</th>
<th>75°C (167°F)</th>
<th>90°C (194°F)</th>
<th>105°C (221°F)</th>
<th>Ambient Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>86</td>
</tr>
<tr>
<td>31–35</td>
<td>0.91</td>
<td>0.94</td>
<td>0.96</td>
<td>0.97</td>
<td>87–95</td>
</tr>
<tr>
<td>36–40</td>
<td>0.82</td>
<td>0.88</td>
<td>0.91</td>
<td>0.95</td>
<td>96–104</td>
</tr>
<tr>
<td>41–45</td>
<td>0.71</td>
<td>0.82</td>
<td>0.87</td>
<td>0.89</td>
<td>105–113</td>
</tr>
<tr>
<td>46–50</td>
<td>0.58</td>
<td>0.75</td>
<td>0.82</td>
<td>0.86</td>
<td>114–122</td>
</tr>
<tr>
<td>51–55</td>
<td>0.41</td>
<td>0.67</td>
<td>0.76</td>
<td>0.82</td>
<td>123–131</td>
</tr>
<tr>
<td>56–60</td>
<td>—</td>
<td>0.58</td>
<td>0.71</td>
<td>0.77</td>
<td>132–140</td>
</tr>
<tr>
<td>61–70</td>
<td>—</td>
<td>0.33</td>
<td>0.58</td>
<td>0.68</td>
<td>141–158</td>
</tr>
<tr>
<td>71–80</td>
<td>—</td>
<td>—</td>
<td>0.41</td>
<td>0.58</td>
<td>159–176</td>
</tr>
</tbody>
</table>

(B) Identification and Grouping. PV source circuits and PV output circuits shall not be contained in the same raceway, cable tray, cable, outlet box, junction box, or similar fitting as conductors, feeders, branch circuits of other non-PV systems, or inverter output circuits, unless the conductors of the different systems are separated by a partition. PV system circuit conductors shall be identified and grouped as required by 690.31(B)(1) through [2]. The means of identification shall be permitted by separate color coding, marking tape, tagging, or other approved means.

1) Identification. PV system circuit conductors shall be identified at all accessible points of termination, connection, and splices. The means of identification shall be permitted by separate color coding, marking tape, tagging, or other approved means. Only solidly grounded PV system circuit conductors, in accordance with 690.41(A)(5), shall be marked in accordance with 200.6.
Exception: Where the identification of the conductors is evident by spacing or arrangement, further identification shall not be required.

(2) Grouping. Where the conductors of more than one PV system occupy the same junction box or raceway with a removable cover(s), the ac and dc conductors of each system shall be grouped separately by cable ties or similar means at least once and shall then be grouped at intervals not to exceed 1.8 m (6 ft).

Exception: The requirement for grouping shall not apply if the circuit enters from a cable or raceway unique to the circuit that makes the grouping obvious.

(C) Single-Conductor Cable.

(1) General. Single-conductor cable Type USE-2 and single conductor cable listed and identified as photovoltaic (PV) wire shall be permitted in exposed outdoor locations in PV source circuits within the PV array. PV wire shall be installed in accordance with 338.10(B)(4)(b) and 334.30.

(2) Cable Tray. PV source circuits and PV output circuits using single-conductor cable listed and identified as photovoltaic (PV) wire of all sizes, with or without a cable tray marking/rating, shall be permitted in cable trays installed in outdoor locations, provided that the cables are supported at intervals not to exceed 300 mm (12 in.) and secured at intervals not to exceed 1.4 m (4 ½ ft).
Informational Note: Photovoltaic wire and PV cable have a nonstandard outer diameter. Table 1 of Chapter 9 contains the allowable percent of cross section of conduit and tubing for conductors and cables.

(D) Multiconductor Cable. Jacketed multiconductor cable assemblies listed and identified for the application shall be permitted in outdoor locations. The cable shall be secured at intervals not exceeding 1.8 m (6 ft).

(E) Flexible Cords and Cables Connected to Tracking PV Arrays. Flexible cords and flexible cables, where connected to moving parts of tracking PV arrays, shall comply with Article 400 and shall be of a type identified as a hard service cord or portable power cable; they shall be suitable for extra hard usage, listed for outdoor use, water resistant, and sunlight resistant. Allowable ampcapities shall be in accordance with 400.5. Stranded copper PV wire shall be permitted to be connected to moving parts of tracking PV arrays in accordance with the minimum number of strands specified in Table 690.31(E).

<table>
<thead>
<tr>
<th>PV Wire AWG</th>
<th>Minimum Strands</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>16–10</td>
<td>19</td>
</tr>
<tr>
<td>8–4</td>
<td>49</td>
</tr>
<tr>
<td>2</td>
<td>130</td>
</tr>
<tr>
<td>1 AWG–1000 MCM</td>
<td>259</td>
</tr>
</tbody>
</table>

(F) Small-Conductor Cables. Single-conductor cables listed for outdoor use that are sunlight resistant and moisture resistant in sizes 16 AWG and 18 AWG shall be permitted for module interconnections where such cables meet the ampacity requirements of 400.5. Section 310.15 shall be used to determine the cable ampacity adjustment and correction factors.
(G) **Photovoltaic System Direct Current Circuits on or in a Building.** Where PV system dc circuits run inside a building, they shall be contained in metal raceways, Type MC metal-clad cable that complies with 250.118(10), or metal enclosures from the point of penetration of the surface of the building to the first readily accessible disconnecting means. The disconnecting means shall comply with 690.13(B) and (C) and 690.15(A) and (B). The wiring methods shall comply with the additional installation requirements in 690.31(G)(1) through (4).

1. **Embedded in Building Surfaces.** Where circuits are embedded in built-up, laminate, or membrane roofing materials in roof areas not covered by PV modules and associated equipment, the location of circuits shall be clearly marked using a marking protocol that is approved as being suitable for continuous exposure to sunlight and weather.

2. **Flexible Wiring Methods.** Where flexible metal conduit (FMC) smaller than metric designator 21 (trade size 3/4) or Type MC cable smaller than 25 mm (1 in.) in diameter containing PV power circuit conductors is installed across ceilings or floor joists, the raceway or cable shall be protected by substantial guard strips that are at least as high as the raceway or cable. Where run exposed, other than within 1.8 m (6 ft) of their connection to equipment, these wiring methods shall closely follow the building surface or be protected from physical damage by an approved means.

3. **Marking and Labeling Required.** The following wiring methods and enclosures that contain PV system dc circuit conductors shall be marked with the wording

 WARNING: PHOTOVOLTAIC POWER SOURCE
by means of permanently affixed labels or other approved permanent marking:

(1) Exposed raceways, cable trays, and other wiring methods

(2) Covers or enclosures of pull boxes and junction boxes

(3) Conduit bodies in which any of the available conduit openings are unused

(4) **Marking and Labeling Methods and Locations.** The labels or markings shall be visible after installation. The labels shall be reflective, and all letters shall be capitalized and shall be a minimum height of 9.5 mm (3/8 in.) in white on a red background. PV system dc circuit labels shall appear on every section of the wiring system that is separated by enclosures, walls, partitions, ceilings, or floors. Spacing between labels or markings, or between a label and a marking, shall not be more than 3 m (10 ft). Labels required by this section shall be suitable for the environment where they are installed.

(H) **Flexible, Fine-Stranded Cables.** Flexible, fine-stranded cables shall be terminated only with terminals, lugs, devices, or connectors in accordance with 110.14.

(I) **Bipolar Photovoltaic Systems.** Where the sum, without consideration of polarity, of the voltages of the two monopole subarrays exceeds the rating of the conductors and connected equipment, monopole subarrays in a bipolar PV system shall be physically separated, and the electrical output circuits from each monopole subarray shall be installed in separate raceways until connected to the inverter. The disconnecting means and overcurrent protective devices for each monopole subarray output shall be in separate enclosures. All conductors from each separate monopole subarray shall be routed in the same raceway. **Solidly grounded bipolar** PV systems shall be clearly marked with a permanent, legible warning notice indicating that the disconnection of the grounded conductor(s) may result in overvoltage on the equipment.
Exception: Listed switchgear rated for the maximum voltage between circuits and containing a physical barrier separating the disconnecting means for each monopole subarray shall be permitted to be used instead of disconnecting means in separate enclosures.

690.32 Component Interconnections. Fittings and connectors that are intended to be concealed at the time of on-site assembly, where listed for such use, shall be permitted for on-site interconnection of modules or other array components. Such fittings and connectors shall be equal to the wiring method employed in insulation, temperature rise, and fault-current withstand, and shall be capable of resisting the effects of the environment in which they are used.

690.33 Connectors. Connectors, other than those covered by 690.32, shall comply with 690.33(A) through (E).

(A) Configuration. The connectors shall be polarized and shall have a configuration that is non-interchangeable with receptacles in other electrical systems on the premises.

(B) Guarding. The connectors shall be constructed and installed so as to guard against inadvertent contact with live parts by persons.

(C) Type. The connectors shall be of the latching or locking type. Connectors that are readily accessible and that are used in circuits operating at over 30 volts dc or 15 volts ac shall require a tool for opening.

(D) Grounding Member. The grounding member shall be the first to make and the last to break contact with the mating connector.

(E) Interruption of Circuit. Connectors shall be either (1) or (2):
(1) Be rated for interrupting current without hazard to the operator.

(2) Be a type that requires the use of a tool to open and marked “Do Not Disconnect Under Load” or “Not for Current Interrupting.”

690.34 Access to Boxes. Junction, pull, and outlet boxes located behind modules or panels shall be so installed that the wiring contained in them can be rendered accessible directly or by displacement of a module(s) or panel(s) secured by removable fasteners and connected by a flexible wiring system.

Part V. Grounding and Bonding

690.41 System Grounding.

(A) PV System Grounding Configurations. One or more of the following system grounding configurations shall be employed:

(1) 2-wire PV arrays with one functional grounded conductor

(2) Bipolar PV arrays according to 690.7(C) with a functional ground reference (center tap)

(3) PV arrays not isolated from the grounded inverter output circuit

(4) Ungrounded PV arrays

(5) Solidly grounded PV arrays as permitted in 690.41(B) Exception

(6) PV systems that use other methods that accomplish equivalent system protection in accordance with 250.4(A) with equipment listed and identified for the use

(B) Ground-Fault Protection. DC PV arrays shall be provided with dc ground-fault protection meeting the requirements of 690.41(B)(1) and (2) to reduce fire hazards.
Exception: PV arrays with not more than two PV source circuits and with all PV system dc circuits not on or in buildings shall be permitted without ground-fault protection where solidly grounded.

(1) **Ground-Fault Detection.** The ground fault protective device or system shall detect ground fault(s) in the PV array dc current-carrying conductors and components, including any functional grounded conductors, and be listed for providing PV ground-fault protection.

(2) **Isolating Faulted Circuits.** The faulted circuits shall be isolated by one of the following methods:

(1) The current-carrying conductors of the faulted circuit shall be automatically disconnected.

(2) The inverter or charge controller fed by the faulted circuit shall automatically cease to supply power to output circuits and isolate the PV system dc circuits from the ground reference in a functional grounded system.

690.42 **Point of System Grounding Connection.** Systems with a ground-fault protective device in accordance with 690.41(B) shall have any current-carrying conductor-to-ground connection made by the ground-fault protective device. For solidly grounded PV systems, the dc circuit grounding connection shall be made at any single point on the PV output circuit.

690.43 **Equipment Grounding and Bonding.** Exposed non–current-carrying metal parts of PV module frames, electrical equipment, and conductor enclosures of PV systems shall be
grounded in accordance with 250.134 or 250.136(A), regard- less of voltage. Equipment grounding conductors and devices shall comply with 690.43(A) through (C).

(A) Photovoltaic Module Mounting Systems and Devices. Devices and systems used for mounting PV modules that are also used for bonding module frames shall be listed, labeled, and identified for bonding PV modules. Devices that mount adjacent PV modules shall be permitted to bond adjacent PV modules.

(B) Equipment Secured to Grounded Metal Supports. Devices listed, labeled, and identified for bonding and grounding the metal parts of PV systems shall be permitted to bond the equipment to grounded metal supports. Metallic support structures shall have identified bonding jumpers connected between separate metallic sections or shall be identified for equipment bonding and shall be connected to the equipment grounding conductor.

(C) With Circuit Conductors. Equipment grounding conductors for the PV array and support structure (where installed) shall be contained within the same raceway, cable, or otherwise run with the PV array circuit conductors when those circuit conductors leave the vicinity of the PV array.

690.45 Size of Equipment Grounding Conductors. Equipment grounding conductors for PV source and PV output circuits shall be sized in accordance with 250.122. Where no overcurrent protective device is used in the circuit, an assumed overcurrent device rated in accordance with 690.9(B) shall be used when applying Table 250.122. Increases in equipment grounding conductor size to address voltage drop considerations shall not be required. An equipment grounding conductor shall not be smaller than 14 AWG.
690.46 Array Equipment Grounding Conductors. For PV modules, equipment grounding conductors smaller than 6 AWG shall comply with 250.120(C).

690.47 Grounding Electrode System.

(A) Buildings or Structures Supporting a PV Array. A building or structure supporting a PV array shall have a grounding electrode system installed in accordance with Part III of Article 250. PV array equipment grounding conductors shall be connected to the grounding electrode system of the building or structure supporting the PV array in accordance with Part VII of Article 250. This connection shall be in addition to any other equipment grounding conductor requirements in 690.43(C). The PV array equipment grounding conductors shall be sized in accordance with 690.45. For PV systems that are not solidly grounded, the equipment grounding conductor for the output of the PV system, connected to associated distribution equipment, shall be permitted to be the connection to ground for ground-fault protection and equipment grounding of the PV array. For solidly grounded PV systems, as permitted in 690.41(A)(5), the grounded conductor shall be connected to a grounding electrode system by means of a grounding electrode conductor sized in accordance with 250.166.

Informational Note: Most PV systems installed in the past decade are actually functional grounded systems rather than solidly grounded systems as defined in this Code. For functional grounded PV systems with an interactive inverter output, the ac equipment grounding conductor is connected to associated grounded ac distribution equipment. This connection is often the connection to ground for ground-fault protection and equipment grounding of the PV array.
(B) Additional Auxiliary Electrodes for Array Grounding. Grounding electrodes shall be permitted to be installed in accordance with 250.52 and 250.54 at the location of ground and roof-mounted PV arrays. The electrodes shall be permitted to be connected directly to the array frame(s) or structure. The grounding electrode conductor shall be sized according to 250.66. The structure of a ground-mounted PV array shall be permitted to be considered a grounding electrode if it meets the requirements of 250.52. Roof mounted PV arrays shall be permitted to use the metal frame of a building or structure if the requirements of 250.52(A)(2) are met.

690.50 Equipment Bonding Jumpers. Equipment bonding jumpers, if used, shall comply with 250.120(C).

Part VI. Marking

690.51 Modules. Modules shall be marked with identification of terminals or leads as to polarity, maximum overcurrent device rating for module protection, and with the following ratings:

1. Open-circuit voltage
2. Operating voltage
3. Maximum permissible system voltage
4. Operating current
5. Short-circuit current
6. Maximum power
690.52 Alternating-Current Photovoltaic Modules. Alternating-current modules shall be marked with identification of terminals or leads and with identification of the following ratings:

(1) Nominal operating ac voltage

(2) Nominal operating ac frequency

(3) Maximum ac power

(4) Maximum ac current

(5) Maximum overcurrent device rating for ac module protection

690.53 Direct-Current Photovoltaic Power Source. A permanent label for the dc PV power source indicating the information specified in (1) through (3) shall be provided by the installer at dc PV system disconnecting means and at each dc equipment disconnecting means required by 690.15. Where a disconnecting means has more than one dc PV power source, the values in 690.53(1) through (3) shall be specified for each source.

(1) Maximum voltage

Informational Note to (1): See 690.7 for voltage.

(2) Maximum circuit current

Informational Note to (2): See 690.8(A) for calculation of maximum circuit current.

(3) Maximum rated output current of the charge controller or dc-to-dc converter (if installed)
690.54 **Interactive System Point of Interconnection.** All interactive system(s) points of interconnection with other sources shall be marked at an accessible location at the disconnecting means as a power source and with the rated ac output current and the nominal operating ac voltage.

690.55 **Photovoltaic Systems Connected to Energy Storage Systems.** The PV system output circuit conductors shall be marked to indicate the polarity where connected to energy storage systems.

690.56 **Identification of Power Sources.**

(A) **Facilities with Stand-Alone Systems.** Any structure or building with a PV power system that is not connected to a utility service source and is a stand-alone system shall have a permanent plaque or directory installed on the exterior of the building or structure at a readily visible location. The plaque or directory shall indicate the location of system disconnecting means and that the structure contains a stand-alone electrical power system.

(B) **Facilities with Utility Services and Photovoltaic Systems.** Plaques or directories shall be installed in accordance with 705.10.

(C) **Buildings with Rapid Shutdown.** Buildings with PV systems shall have permanent labels as described in 690.56(C)(1) through (C)(3).
(1) Rapid Shutdown Type. The type of PV system rapid shutdown shall be labeled as described in 690.56(C)(1)(a) or (1)(b):

(a) For PV systems that shut down the array and conductors leaving the array:

SOLAR PV SYSTEM IS EQUIPPED WITH RAPID SHUTDOWN.

TURN RAPID SHUTDOWN SWITCH TO THE “OFF” POSITION TO SHUT DOWN PV SYSTEM AND REDUCE SHOCK HAZARD IN ARRAY.

The title “SOLAR PV SYSTEM IS EQUIPPED WITH RAPID SHUTDOWN” shall utilize capitalized characters with a minimum height of 9.5 mm (3/8 in.) in black on yellow background, and the remaining characters shall be capitalized with a minimum height of 4.8 mm (3/16 in.) in black on white background.

[See Figure 690.56(C)(1)(a).]
(b) For PV systems that only shut down conductors leaving the array:

SOLAR PV SYSTEM IS EQUIPPED WITH RAPID SHUTDOWN

TURN RAPID SHUTDOWN SWITCH TO THE “OFF” POSITION

TO SHUT DOWN

CONDUCTORS OUTSIDE THE ARRAY. CONDUCTORS IN ARRAY REMAIN ENERGIZED IN SUNLIGHT.

The title “SOLAR PV SYSTEM IS EQUIPPED WITH RAPID SHUTDOWN” shall utilize capitalized characters with a minimum height of 9.5 mm (3/8 in.) in white on red background, and the remaining characters shall be capitalized with a minimum height of 4.8 mm (3/16 in.) in black on white background. [See Figure 690.56(C)(1)(b).]

The labels in 690.56(C)(1)(a) and (b) shall include a simple diagram of a building with a roof. The diagram shall have sections in red to signify sections of the PV system that are not shut down when the rapid shutdown switch is operated. The rapid shutdown label in 690.56(C)(1) shall be located on or no more than 1 m (3
ft) from the service disconnecting means to which the PV systems are connected and shall indicate the location of all identified rapid shutdown switches if not at the same location.

(2) Buildings with More Than One Rapid Shutdown Type. For buildings that have PV systems with both rapid shutdown types or a PV system with a rapid shutdown type and a PV system with no rapid shutdown, a detailed plan view diagram of the roof shall be provided showing each different PV system and a dotted line around areas that remain energized after the rapid shutdown switch is operated.

(3) Rapid Shutdown Switch. A rapid shutdown switch shall have a label located on or no more than 1 m (3 ft) from the switch that includes the following wording:

RAPID SHUTDOWN SWITCH FOR SOLAR PV SYSTEM

The label shall be reflective, with all letters capitalized and having a minimum height of 9.5 mm (3/8 in.), in white on red background.

Part VII. Connection to Other Sources

690.59 Connection to Other Sources. PV systems connected to other sources shall be installed in accordance with Parts I and II of Article 705.
Part VIII. Energy Storage Systems

690.71 General. An energy storage system connected to a PV system shall be installed in accordance with Article 706.

690.72 Self-Regulated PV Charge Control. The PV source circuit shall be considered to comply with the requirements of 706.23 if:

(1) The PV source circuit is matched to the voltage rating and charge current requirements of the interconnected battery cells and,

(2) The maximum charging current multiplied by 1 hour is less than 3 percent of the rated battery capacity expressed in ampere-hours or as recommended by the battery manufacturer.