Pest: Carpenter Ants

Introduction

Carpenter ants are found throughout the world, and there are many different species. The Black Carpenter Ant, *Camponotus pennsylvanicus*, was named by science in 1773, and was the first North American ant to be named. They can be found throughout the United States and southeastern Canada. They are social insects that live in colonies, primarily in wood. Their common name derives from the velvety-smooth walls of the galleries & chambers inside the nest, as if a carpenter had sanded the surface.

DESCRIPTION: Carpenter ants are active indoors during many months of the year, usually during the spring and summer. When ants are active in the house during late winter/early spring (February/March), the infestation (nest) is probably within the household. When carpenter ants are first seen in the spring and summer (May/June), then the nest is likely outdoors and the ants are simply coming in for food. The natural food of the ants consists of honeydew from aphids, other insects, and plant juices, but they will readily forage for water and food scraps within the house.

HABITAT: Under natural conditions, carpenter ants nest in live and dead trees and in rotting logs and stumps. However, they will also construct their nests in houses, telephone poles, and other man-made wooden structures.

Nests are begun in deteriorating wood which has been exposed to moisture. Often, the colony will extend its nest to adjacent, sound wood. Nests are commonly found in porch pillars and roofs, window sills, and wood in contact with soil.

LIFE CYCLE: The colonies of carpenter ants are often long lived. Each colony is founded by a single fertilized queen. She establishes a nesting site in a cavity in wood. She then rears
her first brood of workers, feeding them salivary secretions. She does not leave the nest nor feed herself throughout this period. The workers, which are reared first, assume the task of gathering food with which to feed the younger larvae. As the food supply becomes more constant, the colony population grows very rapidly. A colony does not reach maturity and become capable of producing young queens and males until it contains 2,000 or more workers. It may take a colony from three to six years or more to reach this stage. Each year thereafter, the colony will continue to produce winged queens and males, which leave their nest and conduct mating flights from May through July.

TYPE OF DAMAGE: Carpenter ants rarely cause structural damage to buildings, although they can cause significant damage over a period of years because nests are so long lived. Some recent evidence indicates that they can also cause extensive damage to foam insulation.

CONTROL: Control of carpenter ant infestations requires that the nest be found. Once this is done, the infested wood can be removed or treated chemically, and causes of moisture damage to the wood can be corrected. The best procedure is to inspect all possible locations-and to select these locations on the basis of potential water exposure. Once the nest is located, control can be achieved by the use of an aerosol insecticide labeled for the purpose.

INTERESTING FACTS: Ants of the genus Camponotus are known as carpenter ants because they house their colonies in galleries they excavate in wood. Carpenter ants do not eat the wood they remove during their nest-building activities, but deposit it outside entrances to the colony in small piles. The wood is used solely as a nesting site. The galleries of carpenter ants are kept smooth and clean, and are not lined with moist soil as termite galleries are.

Three Common Species:

- *Camponotus pennsylvanicus* – Black Carpenter Ant
“Pest” Status: Carpenter ants “pest” status is attributed to their tunneling in wood and foraging for food and water in and around homes. The extent and potential damage depends on how many nests are present in a structure, and how long the infestation has been active. Though larger colonies are capable of structural damage, it is not usually as serious as that from termites. Damage may be relatively insignificant, but this can only be determined by locating and exposing the nest area.

Ants as Symptom: Carpenter ants are indicative to problems or other conditions favorable to their infestation present in a building, and thereby requiring attention. These may include moisture problems or rotting wood.
Identification.

Size: Carpenter ants are among the largest in the United States. They vary in size from about ¼ inch (6 mm) for a minor worker, to ½ inch (12 mm) for a major worker, and up to 7/16 inch (18 mm) for winged reproductives. Each colony has one functional queen, 9/16 inch (20 mm) long.

Shape: The ants develop through a series of metamorphoses: egg, larva, pupa, & adult. All stages can be found in a colony, but identification is made from the adults, which are the familiar ant-like insects with 6 legs, 3 distinct body regions (head, thorax, and abdomen) with a constricted waist, and prominent elbowed antennae.

Body Shape: Carpenter ants have only one segment or node between their thorax and abdomen, a circle of hairs at the tip of their abdomen, and an evenly rounded thorax when viewed from the side.

Winged Ants Distinguished from Termites: Winged carpenter ants resemble winged termites and, it is not uncommon for both of these important wood-destroying insects to swarm at the same time. It is vital that they be identified accurately, because control measures differ greatly for the two insects.

Ant Bodies: Ants have small, constricted waists; wings of unequal length, with the front pair longer than the hind pair; and antennae bend at right angles about mid-length.

Termite Bodies: Termite bodies are not narrowed at the middle; their wings are of equal length; and their antennae are rather straight with bead-like segments.
Color: These ants vary from a solid dull black or yellowish-red to a combination of black and dull red or reddish-orange.

Biology and Habits.

Besides being objectionable by their presence, carpenter ants damage wood by hollowing it out for nesting. They excavate galleries in wood which have a smooth, sandpapered appearance. Wood which has been damaged by carpenter ants contains no mud-like material, as is the case with termites. Shredded fragments of wood, similar in appearance to coarse sawdust, are ejected from the galleries through preexisting cracks or slits made by the ants. When such accumulations are found (typically containing dead ants and bits of insects which the carpenter ants have eaten), it's a good indication that a carpenter ant nest is nearby. Oftentimes, however, the excavated sawdust remains hidden behind a wall or in some other concealed area.

Carpenter ants nest in both moist and dry wood, but prefer wood which is moist. Consequently, the nests are more likely to be found in wood dampened by water leaks, such as around sinks, bathtubs, poorly sealed windows/door frames, roof leaks and poorly flashed chimneys. Nests are especially common in moist, hollow spaces such as the wall void behind a dishwasher, or in a hollow porch column. Since there often will be no external signs of damage, probing the wood with a screwdriver helps reveal the excavated galleries. Another technique for locating hidden nests is to tap along baseboards and other wood surfaces with the blunt end of a screwdriver, listening for the hollow sound of damaged wood. If a nest is nearby, carpenter ants often will respond by making a "rustling" sound within the nest, similar to the crinkling of cellophane.

Carpenter ants may establish nests in a number of different locations. It is important to realize that these locations can be either inside or outside the structure. Carpenter ants actually construct two different kinds of nests: parent colonies which, when mature, contain an egg-laying queen, brood and 2000 or more worker ants, and satellite colonies which may have large numbers of worker ants but no queen, eggs or young larvae. The carpenter ants inside a home may have originated from the parent colony or from one or more satellite nests. For example, the ants may be coming from the parent nest located outdoors in a tree stump, landscape timber or woodpile, or from one or more satellite nests hidden behind a wall in the kitchen or bathroom, or perhaps from wood dampened by a roof leak in the attic.
The extent and potential damage to a home depends on how many nests are actually present within the structure, and how long the infestation has been active. Although large carpenter ant colonies are capable of causing structural damage, the damage is not normally as serious as that from termites. In some cases, the damage may be relatively insignificant, but this can only be determined by locating and exposing the nest area.

Mating: Mature carpenter ant colonies produce male and female winged reproductives from early spring to summer, triggered by environmental conditions. This may take several days or weeks. Mating occurs in mid-flight (called a nuptial flight), after which the male dies and the female beings the search for a suitable nesting site. The new queen breaks off her wings shortly before or after choosing the nesting site.

Building a Colony.

Initial Eggs: After establishing the nest, the queen will lay 15 to 20 eggs. Given favorable conditions, the egg matures in about 24 days, larva in 21 days, and pupa in 21 days – giving a total of roughly 66 days from egg to adult. Cool weather may lengthen this period up to 10 months. The queen cares for the initial larvae and feeds them with fluids secreted from her body. After becoming adults, these new workers expand the nest as the colony population increases, excavate galleries, and provide food for the queen and the new brood. The queen produces eggs for the rest of her life.

First Generation: The colony is started by the queen who will form a nest in an old piece of wood or a stump. The first generation ants are small. They regurgitate food to nourish developing larvae. Older larvae are fed solid food; they feed partially digested food to the queen. As the colony matures, several satellite colonies are formed. These colonies are linked to the parent colony.
Growth to Full Size: The colony remains small during the first year, but in later years it grows rapidly, up to a maximum of 2,000 to 3,000 ants. It usually takes three to six years for a colony to reach this size, at which time winged reproductives are produced.

Mature Colony: Upon reaching mature size, the colony rarely grows larger, but workers are produced continually to replace ones that die or are lost. A mature colony produces 200 to 400 winged individuals each year. Production drains the colony resources, keeping ant numbers down. Winged reproductives usually develop in late summer, over winter in the nest, and swarm in spring and early summer. Satellite colonies (which may have large numbers of workers but no queen, eggs, or young larvae) can also be established.

Once a colony outgrows the nest a new satellite colony is formed in another location. The queen and the larvae remain in the parent colony while the satellite colony contains the mature larvae, pupae, workers, and winged reproductives. Worker ants create a trail to nearby feeding sites and to the parent colony. The ants continuously walk this trail from parent nest, to satellite colony, to feeding site and back again.

Nesting Sites.

Preferred Sites: Carpenter ants normally build their nests in hollow trees, logs, posts, landscaping timbers, and wood used in homes and other structures. They prefer moist or partially decayed wood, frequently entering existing cavities or void areas through cracks and crevices.

Most nests which could be found were associated with (in order of frequency):

- Outside walls and voids - 35%
- Attic - 21%
- Ceilings - 19%
• Crawl space - 19%
• Other sites (including interior walls, roof, sill plate, and supports in crawl space and stacked lumber)
• Other researchers have reported that ants show a light preference for moist wood with decay fungi but that sound wood is also mined.

Nests have been found in:

• Porch pillars
• Support timbers
• Window framing and sills
• Roofs
• Shingles
• Siding
• Girders
• Joists
• Studs
• Casings of houses, garages and other buildings
• Insulation
• Drawers of dressers and cabinets
• Behind books
• In hollow doors
• Under floors
• Attic spaces
• Buried wood, stumps or construction debris

Nest Location Outside Structures (Natural Areas or Landscape)

• Forest (within 50 meters) - 27%
• Live trees (excavate heartwood; enter by knotholes, wounds, etc.) - 17%
• Dead trees, stumps or logs, buried wood - 16%
• Wood debris - 8%
• Decorative wood in landscape - 7%
• Stacked lumber - 3%
Nest Structure

The ants usually cut galleries with the grain of the wood, following the softer parts. They leave the harder wood as walls separating the tunnels. They cut openings in these walls to interconnect the galleries. Access to the outside may be through natural openings, or the ants may cut openings where none exist naturally.

“Sawdust” or “Frass”: Unlike termites, they do not feed on wood but merely use it as a place to build a nest. Occupied galleries are kept immaculate. Shredded wood fragments from the excavations are carried from the nest and deposited outside. Cone-shaped piles of these fragments sometimes build up beneath the “windows” or other nest openings. The piles may also contain inedible parts of insects from their diet, bits of sand or soil, dead ant bodies from the colony, and general debris. This “sawdust” or “frass” is not always visible, because ants may dispose of it in hollow parts of trees, void areas of structures, or unused galleries in the nest.

Becoming Pests: Carpenter ants become pests when they nest in one of the voids or damp areas in human construction, or when they forage for food in our houses. Usually, an infestation occurs when all or part of an existing colony moves into a house from outside. Ants can enter when tree branches or utility lines contact a structure; through cracks and
crevices around windows and in foundation walls; through ventilation openings in the attic; and through foundation heating or air-conditioning ducts.

Ideal Moisture Conditions: Carpenter ants usually nest in wood that is very soft or previously damaged by water or termites. A colony develops best in wood with moisture content above 12-15%. This requires the wood to be wet by rain, leaks, condensation, or high continuous relative humidity. The most common way in which homes become infested is through emigration of an existing colony. Houses located near wooded areas or brush covered vacant lots are good candidates for infestation. Carpenter ant colonies are inclined to move if they are disturbed, as often happens during construction. Thus, new homes or those surrounding a new building lot present likely locations for attack.

Typical locations:

- Wood affected by water seepage from plugged drain gutters, damage flashing, wood shingled roofs, poorly fitted or damaged siding, improper pitch of porch floors, between the roof and ceiling of flat deck porches, hollow porch posts & columns, or leaking door and window frames.
- Areas around plumbing in kitchens and bathrooms where water leaks have occurred, soaking the surrounding wood.
- Wood in contact with soil, such as porch supports, siding, and stair risers.
- Wood in areas of poor ventilation or condensation such as cellars, crawl spaces, attics, or under porches.
- Wood scraps in dirt-filled slab porches.
- Voids under bathtubs or hot tubs.
- Hollow wooden doors; hollow ceiling beams, hollow shower and curtain rods.
- Sill plates and floor joists.
- Voids under attic insulation or under insulation in crawl spaces.
- Voids above windows, doors, and bay windows.

Diet.

Omnivorous: Carpenter ants eat a great variety of both animal and plant foods, including honeydew from aphids, scale insects and other plant-sucking insects, plant juices, fresh
fruits, living or dead insects, other small invertebrates, common sweets such as syrup, honey, jelly, sugar and fruit, and most kinds of meat, grease, and fat. Unlike termites, they cannot digest wood cellulose. They readily feed on termites and usually never co-exist with them in the same home.

Nocturnal: The ants forage mostly at night. Solitary ants seen during the day are usually scouts looking for suitable food sources.

Management.

Houses with the following characteristics were found to be more likely places of infestations.

- Wood frame
- Crawl space
- Cedar or plywood siding
- Moderately to gently sloping roof
- 5-25 years of age
- Vegetation (trees and shrubs) surrounding the house
- “Structures located near the edge of the forest were more liable to attack than those located further away.” This is because the ants that have well-established nests in trees or stumps can easily move to the nearby house and establish satellite colonies.

Inspection: The key to successfully managing carpenter ants is to identify all locations where a colony could exist. Review the information already given where carpenter ant nests have been found and/or could exist.

If several nests are found it is important to find out if they belong to the same parent nest or if there is more than one parent nest. This can be accomplished by simply placing two ants, each one from a different nest, in a jar. If they fight they are from different parent nests. Ants from the same parent nest will not fight.

Actual Ants: Seeing a carpenter ant in a home does not necessarily mean that the house is infested. These ants forage far and wide for food. However, if winged ants are seen emerging from a wall inside the house, if several worker ants are seen or a faint rustling or a clicking sound is heard it is very possible the house is infected.
Ant Trails

Ants move along definite trails by following a chemical scent or visual clues. These trails can be above ground or subterranean and are actually constructed by cutting away vegetation, removing pebbles, excavating soil and even by covering open trails with a roof of needles from nearby trees. Trails can vary in width from 1/8" to 3/8".

The ants from a colony will follow the same path each year even if grass has grown in it. They will clear the old trail.

Trail Locations Outside Structures

Ants follow natural contours. They will cross lawns and flower beds but often prefer the cover afforded by moving along the edges of things.

- Edge of driveway or sidewalk, mowing strips
- Under patio blocks, wood steps in landscape or wood planks
- Edge of foundation or planters or sidewalk
- Edge of lawns or flower beds
- Fence stringers
- Excavate along tree roots (easy access to crawl space via roots of trees or stumps which extend under the house)

Trail Locations Inside Structures

Again ants prefer natural, easy and protected routes:

- Edges of cabinets, furniture
- Excavated trails through insulation in wall voids
- Along wiring or plumbing which cuts through studs
- Wires or branches coming to the house
- Root channels from infested trees or stumps which go beneath the house.

© 2014 All Star Training, Inc.
Activity Along Ant Trails

- Ants are generally active along ant trails in western Washington from April to mid-October.
- Hours of greater activity are from 8 p.m.-4 a.m.; although some ants can be found at all hours.
- A sudden increase in activity occurs 5-10 minutes after sunset and is greatest from about 10 p.m. to 2 a.m.
- Temperature or rainfall doesn't seem to influence this activity.

Ants returning to nests are either:

- Larger with full (stretched) stomach so they look somewhat banded
- Carrying food such as insects.
- Some ants will be going to the feeding areas (usually trees). They are not stretched or banded. Some will be engaged in trail building (at night mostly).

Following Ant Trails to Locate a Nest

Do not disturb any trails until you locate the nests. The ants will just get sneaky and reroute the trail which may take much longer to locate.

Ants will generally be going to and from:

- Feeding areas
- Parent nests
- Satellite nests

Banded ants or ants with insects will be going from feeding grounds to parent (or satellite) nests. The young growing larvae and queen need the most food, so more ants will take food toward the parent colony, with fewer moving toward the satellite. Ants carrying larvae or pupae (papery cocoons) are moving from the parent to satellite colony.
Activity, therefore ease in following a trail, is greatest after sunset (roughly between 10 p.m. to 2 a.m.). A red light disturbs ants less than white light.

Trails may be difficult to locate since they may disappear under boards, sidewalks or go underground.

You have time. Keep watching for clues as you inspect the yard or house. Don't get trigger-happy and spray the trail, or you will have to start over if you want to find the nest.

Winged Reproductives: A sign of an infestation is the appearance of winged reproductives during spring. These can be found in spider webs, window ledges, light fixtures, and a host of other places.

Inspecting Structures: Inspect the structure thoroughly, both inside and out. The image to the left is of what once was a 2x6. Carefully examine the areas listed above for signs of carpenter ants. Conical piles of shredded wood debris are an excellent indicator of a nest.
site. Look for tiny openings of any wooden structures that have been cut into the wood. These tiny “windows” are actually garbage chutes used by the ants to get rid of the wastes.

Inspecting Outside a Structure: Examine any tree stumps, roof edges, trim boards, attached fences, dead or dying shrubbery, wooden porch floors and columns, and over hanging tree limbs, vines, power or utility lines. In living trees, openings to a nest are usually in knotholes, scars, dead areas, or crotch angles.

Forage Radius: Carpenter ants may travel as far as 100 yards from their nest to find a food source, and sometimes it is possible to follow foraging carpenter ants to find the nest.

Other Insects: During inspection, you may find other wood-infesting insects or damage by them. These may include subterranean termites, drywood termites, wood-destroying beetles, and carpenter bees.

Prevention: To greatly reduce the likelihood of carpenter ant infestations:

- Remedy or replace damp or decaying wood, where carpenter ants are likely to nest.
- Repair plumbing or roof leaks promptly and replace damaged wood.
- Make sure there is proper clearance between soil and structural wood.
- Provide good ventilation under the house and the attic.
- Drain water away from structure.
- Remove stumps, logs, and wood debris near the house.
- Store firewood away from the house.
- Trim back any tree or shrub limbs touching the structure.
- Remove or treat with insecticides any carpenter ant colonies within 100 feet of the house.
- Keep exposed wood in good condition, with all cracks and knotholes, checks, or joints properly sealed with wood putty and all surfaces painted.

Insecticide Treatment.

Correction of conditions conducive to carpenter ant infestation should be the first step. This includes clearing away any decaying or infested wood from around buildings and removing firewood from inside the premises and away from the sides of buildings. If possible,
decaying or infested structural wood should be replaced with sound material. Humidity problems in the home should be investigated and corrected. Removal of potential food sources will discourage ants from entering buildings. This can be accomplished by keeping food in sealed containers and by implementing good sanitary practices such as regularly sweeping up all crumbs and other food fragments.

Domestic class products for ant control available to homeowners will generally contain the active ingredient carbaryl or propoxur. The application of such products as boric acid or diatomaceous earth can be effective in reducing the number of ants infesting a household. There are also several other commercial products available to professional Pest Control Operators.

Pest control products should be applied to areas around doors, windows and other places where ants may enter the premises. Dust or spray ant runways and hills found in lawns and gardens. Effective control may necessitate locating and destroying colonies found within 90 metres or so of the house.

Inside the house, force the pesticide product into infested wood through existing openings or newly drilled small holes. Where possible, locate and treat nests and surrounding areas. Spray or dust the product into areas where the ants may hide, including cracks and crevices, along baseboards, behind and beneath sinks, stoves, refrigerators, cabinets and around garbage cans, plumbing and other utility installations. Repeat treatment if reinfestation occurs. Good sanitary practices should be maintained to prevent reinfestation.

For commercial food processing or preparation areas, use products specifically labeled for such sites. Carefully follow all label directions and precautions. Remove or cover all food, packaging material, and utensils before treatment. Afterwards, wash all surfaces that may be in contact with food and rinse thoroughly with potable water before re-use.

If treatment is being done professionally, occupants and pets should not be present during application and for sufficient time afterwards to allow thorough drying of the product and ventilation of the premises.
Chemical control methods have two major goals: elimination of existing nests and prevention of further pest entrance. Chemical control is most effective when used in conjunction with the above methods of physical control. It should be noted, however, that once a colony is well established, it is usually necessary to locate and treat the actual nest site to achieve permanent or long-term control. In difficult instances, this job may best be left to a professional exterminator.

Residual Insecticide: Remember to always read the label directions for safe use of any insecticide. Treat carpenter ant nests with residual insecticide applied either as dust or spray. You may need to drill small holes in to wall voids, window and doorsills, baseboards, and other areas to reach the nest or major part of the colony. Dust formulations are particularly effective, as the ant activity tends to spread the dust throughout the colony.

Effective Insecticides: Several types of residual insecticides are effective, including carbaryl (Sevin®), chlorpyrifos (Dursban®), diazinon, propoxur (Baygon®), or any of the synthetic pyrethroids (permethrin, cypermethrin, cyfluthrin, etc.).

Wooden Structures: Treat wooden structural members and other exposed, frequently wet wood with a wood preservative to slow decay.

Bait: Some baits are labeled for carpenter ants. The colony can be controlled successfully if foraging ants take the bits and pass the toxin to the queen and brood. Research is being conducted to find baits acceptable to these foraging ants; some baits available now do not always attract them.

There are basically four methods of pesticide application used for controlling active infestations of carpenter ants: exterior perimeter treatments, interior void treatments, treating the infested wood and baiting.

Perimeter Insecticide Treatments
The most commonly used method for controlling carpenter ants is treating the perimeter of a home with a dust or spray. There are several products available for this type of application, but Suspend SC, Talstar Concentrate and Cynoff WP are the best. When used in accordance with their labels they work well. However, these treatments do not keep ants from entering a home from overhead trees and power lines. Also, as a stand-alone treatment, they rarely eliminate ants inside voids and walls.

Apply a pin stream (jet) application to the outside of the structure along the junction of the foundation and the building siding or shingle. Also, treat around all window frames and doorframes at ground level. Treat any deck or other wood that contacts the structure along the contact areas. Treat any area where utilities such as plumbing or air conditioning lines enter the structure at ground level.

On the inside, treat baseboards along exterior walls, window frames and doorframes, the sill plate downstairs (if it’s accessible), around bathroom and kitchen fixtures and where plumbing enters those rooms. Also treat around and behind kitchen appliances paying special attention to the dishwasher area. You may need to remove the kickplate at the base of the dishwasher in order to treat that area properly.

The concept is to set up an insecticidal barrier that will kill ants from either side of the foundation. We have concluded that a partial treatment is frequently not effective. It’s also important to note that applying a lot of spray is unnecessary: once you’ve wet the surface, it’s treated. Also, don’t waste spray killing individual ants - if they contact the areas you’ve treated, they will die - even if they don’t die immediately. Finally, most of the liquid sprays are residual and thus are effective for several weeks; it is really not necessary to spray more frequently than once per month. It is recommended that one treatment be done every three months (once each season) for good control.
Interior Void Treatments

The treatment of interior wall voids has become more popular with the availability of insecticide dusts and the introduction of foaming applications. The efficacy of dusts depends on ants ignoring the presence of the dry insecticides and walking through them, contaminating the ants’ bodies in the process. Ants then ingest the insecticide while grooming. (Ants, carpenter ants groom themselves and each other). If dusts are not applied properly, ants and other insects simply detour around the insecticide. To apply dusts properly, an electric duster or bellows duster must be used. You need to use a pyrethroid insecticide dust that is waterproof.

One limitation of this control method is that the dust must be placed directly onto the pathway used by the ants. If, for example, the dust is placed on the floor plate and the ants are using an electrical conduit located three inches above the plate as their pathway, control will not be attained. This means simply that dust is an excellent tool, but should be used along with other control methods, not as a “stand alone” carpenter ant eliminator.
Another problem with using dusts is their sensitivity to high moisture conditions. Dusts have a tendency to cake or crust when they get damp. This makes them ineffective since ants can then walk across them without picking any up on their bodies.

New Technology Points to Baiting

As with cockroaches, baiting for ants has become a very popular. There are a number of reasons. First, baits are much less toxic than sprays and relatively small amounts of product are needed to for the treatment. Next, baiting can eliminate ant colonies while sprays simply kill individual workers. Ant colonies are likely to produce more workers to replace the others, which means that spraying for ants becomes a quarterly requirement. Finally, baits are usually less objectionable because they are either odorless or have very little odor.
Ant bait stations, which are commonly referred to as “traps”, are really small containers that hold a hardened bait product so ants can enter and feed. Bait stations offers the highest level of safety because the pesticide is well protected within the station.

However, the bait in the stations is not as an attractive product since it is dry and Carpenter Ants, in particular, seek moisture. But even dry foods have some moisture. We have had people use stations successfully for carpenter ants as well as for other ant species.